S.14 Anaerobic Baffled Reactor (ABR)

The An aerobic Baffled Reactor (ABR) treats many different types of wastewater and can be considered an ‘improved’ Septic Tank S.13 that uses baffles to optimise treatment. Treatment of the wastewater takes place as it is forced to flow upward through a series of chambers, where pollutants are biologically degraded in an active sludge layer at the bottom of each chamber.Describes biological processes that occur in the presence of oxygen.
Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Describes the conditions under which putrefaction and anaerobic digestion take place.
Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.
Waste matter that is transported through the sewer.

ABRs can treat raw, primary, and secondary treated sewage and greywater (with organic load). The principal working process is an aerobic (in the absence of oxygen) and makes use of biological treatment mechanisms. The upflow chambers provide enhanced removal and digestion of organic matter. Biochemical oxygen demand (BOD) may be reduced by up to 90 %, which is far superior to its removal in a conventional Septic Tank S.13 .

Describes biological processes that occur in the presence of oxygen.
Total volume of water generated from washing food, clothes and dishware, as well as from bathing, but not from toilets (see blackwater). It may also contain traces of excreta (e.g. from washing diapers) and, therefore, some pathogens. Greywater accounts for approximately 65 % of the wastewater produced in households with flush toilets.An organism or other agent that causes disease.Describes the conditions under which putrefaction and anaerobic digestion take place.
Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
User interface used for urination and defecation. Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.
Waste matter that is transported through the sewer.

Design Considerations

Small-scale, stand-alone ABRs typically have an integrated settling compartment, but primary sedimentation can also take place in a separate Settler T.1 or another preceding technology, e.g. a Septic Tank S.13 . ABRs should consist of at least 4 chambers (as per BOD load), more than 6 are not recommended. The organic load should be < 6 kg/m³ */day BOD, the water depth at the outlet point is preferably about 1.8 m; a maximum of 2.2 m (for large systems) should not be exceeded. Hydraulic retention time should not be less than 8 hours, and 16–20 hours is a preferred range. Upflow velocity ideally ranges around 0.9 m/h, velocities above 1.2 m/h should be avoided. Accessibility to all chambers (through access ports) is necessary for maintenance. The tank should be vented to allow for controlled release of odorous and potentially harmful gases. Where kitchen wastewater is connected to the system, a grease trap must be positioned before the settler component to avoid excess oil and grease substance entering and hindering treatment processes.

Gravity settling of particles in a liquid such that they accumulate. Describes the conditions under which putrefaction and anaerobic digestion take place.
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Materials

An ABR can be made of concrete, fibreglass, PVC or plastic, and can be prefabricated. A pump might be required for discharging the treated wastewater where gravity flow is not an option.

Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Applicability

Roughly, an ABR for 20 households can take up to several weeks to construct, much quicker (3–4 days) if reinforced fibre plastic ABR prefab modules are used. Once in operation, 3–6 months (up to 9 in colder climates) is needed for the biological environment to establish and maximum treatment efficiency to be reached. Therefore, ABRs are not suitable for the acute response phase of an emergency but are more suited for the stabilisation and recovery periods. They can also be a long-term solutions. The neighbourhood scale is most suitable, but it can also be implemented at the household level or in larger catchment areas and/or public buildings (e.g. schools). Even though ABRs are designed to be watertight, it is not recommended to construct them in areas with high groundwater tables or where there is frequent flooding, alternatively prefabricated modules can be placed above ground. ABRs can be installed in every type of climate, although the efficiency will be lower in colder climates.

Water that is located beneath the earth’s surface.
The degradation of organic matter with the goal of reducing readily biodegradable compounds to lessen environmental impacts (e.g., oxygen depletion, nutrient leaching).

Operation and Maintenance

ABRs are relatively simple to operate; once the system is fully functioning, specific operation tasks are not required. To reduce start-up time, the ABR can be inoculated with an aerobic bacteria, e.g. by adding Septic Tank sludge, or cow manure. The system should be checked monthly for solid waste, and the sludge level should be monitored every 6 months. Desludging is required every 2–4 years, depending on the accumulation of sludge at the bottom of chambers reducing treatment efficiency. Desludging is best done using a Motorised Emptying and Transport technology C.2 , but Manual Emptying C.1 can also be an option. A small amount of sludge should be left to ensure the biological process continues.

Describes biological processes that occur in the presence of oxygen.
Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. Simple, single cell organisms that are found everywhere on earth. They are essential for maintaining life and performing essential “services”, such as composting, aerobic degradation
of waste, and digesting food in our intestines. Some types, however, can be pathogenic and cause mild to severe illnesses. Bacteria obtain nutrients from their environment by excreting enzymes that dissolve complex molecules into more simple ones which can then pass through the cell membrane.

The process by which biodegradable components are biologically decomposed by microorganisms (mainly bacteria and fungi) under controlled aerobic conditions.
The utilisation of products derived from a sanitation system.
Any cellular or non-cellular microbiological entity capable of replication or of transferring genetic material (e.g. bacteria, viruses, protozoa, algae or fungi).
Any substance that is used for growth. Nitrogen (N), phosphorus (P) and potassium (K) are the main nutrients contained in agricultural fertilisers. N and P are also primarily responsible for the eutrophication of water bodies.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
An organism or other agent that causes disease.A diverse group of unicellular eukaryotic organisms, including amoeba, ciliates, and flagellates. Some can be pathogenic and cause mild to severe illnesses.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
An infectious agent consisting of a nucleic acid (DNA or RNA) and a protein coat. Viruses can only replicate in the cells of a living host. Some pathogenic viruses are known to be waterborne (e.g., the rotavirus that can cause diarrheal disease).
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.
Le transport des produits d’un groupe fonctionnel à un autre. La distance la plus longue et les défaillances les plus importantes se situent en général entre l’interface utilisateur ou la collecte et le stockage/traitement, et le traitement (semi-)centralisé. C’est pourquoi, pour simplifier, le transport ne décrit que les technologies utilisées pour transporter les produits entre ces groupes fonctionnels. Dans le graphique de présentation des technologies, le groupe fonctionnel « transport » est subdivisé en trois sous-groupes: « vidange/raccordement », « transport » et « stockage intermédiaire ». Ceci permet d’affiner la classification de chacune des technologies qui y sont listées en fonction de leur rôle dans le processus de transport.Waste matter that is transported through the sewer.
Agent infectieux constitué d’une substance nucléique (ADN ou ARN) et d’une couche de protéines. Les virus ne peuvent se répliquer que dans les cellules d’un hôte vivant. Certains virus pathogènes sont connus pour être d’origine hydrique (par exemple le rotavirus qui peut provoquer des maladies diarrhéiques).

Health and Safety

Effluent, scum and sludge must be handled with care as they contain high levels of pathogens. During sludge and scum removal, workers should be equipped with proper protection personal protective equipment (boots, gloves, and clothing). The effluent should be treated further (e.g. POST) if reused in agriculture or otherwise discharged properly.

General term for a liquid that leaves a technology, typically after blackwater or sludge has undergone solids separation or some other type of treatment. Effluent originates at either a collection and storage or a (semi-) centralised treatment technology. Depending on the type of treatment, the effluent may be completely sanitised or may require further treatment before it can be used or disposed of.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
An organism or other agent that causes disease.Use of recycled water or other sanitation products.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

The layer of solids formed by wastewater constituents that float to the surface of a tank or reactor (e.g., oil and grease).
Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.
Le terme général employé pour un liquide sortant d’une infrastructure, habituellement après que les eaux noires ou les boues ont subi une séparation de la fraction solide ou un autre type de traitement. L’effluent provient soit d’un processus de collecte et de stockage, soit d’une technologie de traitement. En fonction du type de traitement, l’effluent peut être complètement assaini ou nécessiter un autre traitement avant d’être utilisé ou rejeté.Waste matter that is transported through the sewer.

Costs

The capital costs of an ABR is medium and the operational costs are low. Costs of the ABR depend on what other conveyance technology and treatment modules used, and also on local availability and thus costs of materials (sand, gravel, cement, steel) or prefabricated modules and labor costs. The main operation and maintenance costs are related to the removal of primary sludge and the cost of electricity if pumps are required for discharge (in the absence of a gravity flow option).

Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Describes the transport of products from one functional group to another. Although products may need to be transferred in various ways between functional groups, the longest, and most important gap is usually between the user interface or collection and storage/treatment and (semi-) centralised treatment. Therefore, for simplicity, conveyance only describes the technologies used to transport products between these two functional groups. In the technology overview graphic, the conveyance functional group is subdivided into the two subgroups: “Emptying and Transport” and “Intermediate Storage”. This allows for a more detailed classification of each of the listed conveyance technologies.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. Funds spent for the acquisition of a fixed asset, such as sanitation infrastructure.
The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.
Le transport des produits d’un groupe fonctionnel à un autre. La distance la plus longue et les défaillances les plus importantes se situent en général entre l’interface utilisateur ou la collecte et le stockage/traitement, et le traitement (semi-)centralisé. C’est pourquoi, pour simplifier, le transport ne décrit que les technologies utilisées pour transporter les produits entre ces groupes fonctionnels. Dans le graphique de présentation des technologies, le groupe fonctionnel « transport » est subdivisé en trois sous-groupes: « vidange/raccordement », « transport » et « stockage intermédiaire ». Ceci permet d’affiner la classification de chacune des technologies qui y sont listées en fonction de leur rôle dans le processus de transport.Waste matter that is transported through the sewer.

Social Considerations

Usually, an aerobic treatment systems are a well-accepted technology. Because of the delicate ecology in the system, awareness raising on eliminating the use of harsh chemicals for the users is necessary.

Describes biological processes that occur in the presence of oxygen.

Fact Sheet Overview

Inputs

Blackwater
Greywater

Outputs

Effluent
Sludge

Response Phase

Stabilisation +
Recovery + +

Challenging Ground Conditions

Unsuitable

Application Level

Household +
Neighbourhood + +

Water-based or Dry Technology

Water-Based

Management Level

Household +
Shared + +
Public + +

Technical Complexity

Medium

Functional Group

Collection / Storage

Required Space

Medium

Objectives & Key Features

• Excreta containment
• Solid/liquid separation
• BOD reduction

Strength & Weakness

  • Low operating costs
  • Resistant to organic and hydraulic shock loadings
  • High reduction of BOD
  • Low sludge production; the sludge is stabilised
  • Requires expert design and construction
  • Low reduction of pathogens and nutrients
  • Effluent and sludge require further treatment and/or appropriate discharge
  • Long start-up time
arrow_upward