arrow_backEmergency WASH

C.1 Manual Emptying and Transport

Manual Emptying and Transport refers to the different ways in which sludge and solid products generated at on-site collection and storage/treatment facilities can be manually removed and transported to treatment or disposal sites.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

In some situations, collection and storage/treatment facilities can only be emptied manually. The manual emptying of latrine pits, vaults and tanks can be done in one of two ways: (1) using buckets and shovels, or (2) using a portable, manually operated hand pump specially designed for sludge (e.g. Gulper, Rammer, Manual Desludging Hand Pump or Manual Pit Emptying Technology (MAPET)). If the material is solid and cannot be removed through pumping, emptying must be carried out using a shovel and bucket. If the sludge is viscous or watery it should be emptied with a hand pump or a vacuum truck, and not buckets, due to the high risk of collapsing pits, toxic fumes, and exposure to unsanitised sludge.

Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Design Considerations

Sludge hand pumps, such as the Gulper, work on the same concept as water hand pumps: the bottom of the pipe is lowered into the pit/tank while the operator remains at the surface. As the operator pushes and pulls the handle, the sludge is pumped up and is then discharged through the discharge spout. The sludge can be collected in barrels, bags or carts, and removed from the site with little danger to the operator. Alternatively, a MAPET consists of a manually operated pump connected to a vacuum tank mounted on a pushcart for transportation. A hose is connected to the tank and is used to suck sludge from the pit. When the wheel of the hand pump is turned, air is sucked out of the vacuum tank and sludge is sucked up into the tank. Depending on the consistency of the sludge, the MAPET can pump up to a depth of 3m.

Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Materials

In principle, hand pumps can often be constructed using locally available material such as steel and PVC pipes. Prefabrication is also possible. For some pumps, additional piping is needed. Other tools such as buckets, shovels and hand carts should be available locally.

Applicability

Manual Emptying and Transport is viable in all phases of emergencies and appropriate for areas that are either not accessible by motorised vacuum trucks, or where vacuum truck emptying is too costly. The method is suitable for dense, urban and informal settlements, although the type and size of transport vehicle determines the feasible distance to the discharge point. In some cases, sludge may be too thick to pump and it may have to be fluidised with water so that it flows more easily. However, this increases the volume to be transported and may be inefficient and costly. Solid waste and sand that enters the pit or vault will make emptying more difficult and may clog pipes or pumps. The hand pump is a significant improvement over emptying with a bucket and shovel (e.g. time efficiency and reduced risk of exposure) and could prove to be a sustainable business opportunity in some regions. The technology is more feasible where a Transfer Station C.6 is nearby. One difficulty is that pumps are often not readily available on the market, so local technicians must be trained in their manufacture before any units are available.

Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Operation and Maintenance

Chemicals or oil are commonly added during pit emptying to reduce odours. This is not recommended. It can cause difficulties in the subsequent treatment, additional health threats to the workers, environmental pollution and corrosion to the pumps and holding tanks. Hand pumps are unlikely to suffice to empty an entire pit and therefore, emptying may be required more frequently depending on the collection and storage technology used. Hand pumps and hand carts require daily maintenance (cleaning, repairing and disinfection). The pumps can be built and repaired with locally available material. If well maintained and constructed, they are usable for many years.

The elimination of (pathogenic) microorganisms by inactivation (using chemical agents, radiation or heat) or by physical separation processes (e.g., membranes). See POST
Any cellular or non-cellular microbiological entity capable of replication or of transferring genetic material (e.g. bacteria, viruses, protozoa, algae or fungi).
An organism or other agent that causes disease.A diverse group of unicellular eukaryotic organisms, including amoeba, ciliates, and flagellates. Some can be pathogenic and cause mild to severe illnesses.
An infectious agent consisting of a nucleic acid (DNA or RNA) and a protein coat. Viruses can only replicate in the cells of a living host. Some pathogenic viruses are known to be waterborne (e.g., the rotavirus that can cause diarrheal disease).

Health and Safety

The most important aspect of manual emptying is ensuring that workers are equipped with personal protective equipment like gloves, boots, overalls and facemasks. Regular medical exams and vaccinations should be required for everyone working with sludge.

Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Costs

The capital costs for Manual Emptying and Transport are low. Operational costs are variable and depend on the fee for the workers. Additional costs need to be considered for daily cleaning and maintenance of equipment.

Funds spent for the acquisition of a fixed asset, such as sanitation infrastructure.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Social Considerations

Manual Emptying might not be a socially acceptable form of employment within the community. Additionally, spillage and odour may further hinder acceptance. This can be overcome if the service is properly formalised, with adequate training and equipment. If putting solid waste in the pits is a common practice it should be addressed as part of hygiene promotion or other awareness raising activities X.12.

Case Studies & Related Content

Geotube - Filtration
The latrines provided for the refugees are simple pit latrines. Pits are emptied approximately every 4 to 8 weeks depending on the number of users. In the hilly terrain of Cox’s Bazaar, the transportation of the sludge is challenging and time consuming.
Suggested by: Alberto Acquistapace (Solidarités International) at 20.03.2021

Constructed Wetland
Kutupalong camp has a natural terrain with hills and canals flowing through the downhills. The forced Myanmar inhabitants have their shelters mostly at different levels of the hills, which makes it difficult to desludge toilets pits.
Suggested by: (Practical Action) at 20.03.2021

Anaerobic Baffled Reactor
The ABR is at the top of the hill and is operated through gravitational force. It consists of settler- thickening tank and 4 baffled reactors. Besides, there is a provision of planted filtration unit using different sizes gravel and sand.
Suggested by: (NGO Forum) at 20.03.2021


Consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

Key decision criteria

Input Products

Blackwater
Effluent
Sludge
Stored Urine
Urine

Output Products

Blackwater
Effluent
Sludge
Stored Urine
Urine

Emergency Phase

Acute Response + +
Stabilisation + +
Recovery + +

Challenging Ground Conditions

Suitable

Application Level / Scale

Household + +
Neighbourhood + +

Water-based and Dry Technologies

Water-Based & Dry

Management Level

Household +
Shared + +
Public + +

Technical Complexity

Low

Space Required

Little

Objectives & Key Features

• Emptying and transport where access is an issue

Strength & Weakness

  • Provides services to communities without sewers and where access is difficult
  • Low capital costs; variable operating costs depending on transport distance
  • Simple hand pumps can be built and repaired with locally available materials
  • Potential for local job creation and income generation
  • Manual Emptying exposes workers to serious health risks
  • Emptying pits can take several hours or days depending on pit size
  • Solid waste in pits may block pipes and damage pumps
  • Some devices may require specialised repair (welding)
arrow_upward