arrow_backEmergency WASH

POST Tertiary Filtration and Disinfection

Depending on the end-use of the effluent or national standards for discharge and end-use, a Post-Treatment step may be required to remove pathogens, residual suspended solids and/or dissolved constituents. Tertiary Filtration and Disinfection processes are most commonly used to achieve this.General term for a liquid that leaves a technology, typically after blackwater or sludge has undergone solids separation or some other type of treatment. Effluent originates at either a collection and storage or a (semi-) centralised treatment technology. Depending on the type of treatment, the effluent may be completely sanitised or may require further treatment before it can be used or disposed of.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
An organism or other agent that causes disease.The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Post-Treatment is not always necessary and a pragmatic approach is recommended. The effluent quality should correspond with any intended end-use, the quality of the receiving water body or local regulations for effluent discharge. The World Health Organization Guidelines provide useful information on risk assessment and management associated with microbial hazards and toxic chemicals. Chlorine solutions can disinfect an effluent with low organic content and reduce pathogens in faecal sludge, however, the chlorine is scavenged by oxidation of organics and thus not used in an efficient manner. Disinfection of sludge is not Post-Treatment and can be done through Lactic Acid Fermentation S.19 , Urea Treatment S.18 and Lime Treatment S.17 .

General term for a liquid that leaves a technology, typically after blackwater or sludge has undergone solids separation or some other type of treatment. Effluent originates at either a collection and storage or a (semi-) centralised treatment technology. Depending on the type of treatment, the effluent may be completely sanitised or may require further treatment before it can be used or disposed of.Refer to biodegradable plant material (organic waste) that must be added to some technologies in order for them to function properly. Organic degradable material can include, but is not limited to, leaves, grass and food market waste. Although other products in this compendium contain organic matter, the term organics is used to refer to undigested plant material.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The utilisation of products derived from a sanitation system.
The common name for calcium oxide (quicklime, CaO) or calcium hydroxide (slaked or hydrated lime, Ca(OH)2). It is a white, caustic and alkaline powder produced by heating limestone. Slaked lime is less caustic than quicklime and is widely used in water/wastewater treatment and construction (for mortars and plasters). It can also be used for on-site treatment of faecal sludge. See S.17A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
An organism or other agent that causes disease.The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
The organic molecule (NH2)2CO that is excreted in urine and that contains the nutrient nitrogen. Over time, urea breaks down into carbon dioxide and ammonium, which is readily used by organisms in soil. It can also be used for on-site faecal sludge treatment. See. S.18Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Design Considerations

Tertiary Filtration processes can be classified as either depth (or packed-bed) filtration or surface filtration (e.g. membranes). Depth filtration involves removal of residual suspended solids by passing the liquid through a filter bed made of a granular filter medium (e.g. sand). If activated carbon is used as the filter medium, the dominating process is adsorption. Activated Carbon absorbers remove a variety of organic and inorganic compounds, and also eliminate taste and odour. Surface Filtration involves the removal of particulate material by mechanical sieving as the liquid passes through a thin septum (e.g. filter layer). Depth filtration is successfully used to remove protozoan cysts and oocysts, while ultra filtration membranes reliably eliminate bacteria and viruses. Low pressure membrane filtration processes( including gravity-driven membrane filters) are being developed. Disinfection includes the destruction, inactivation, and/ or removal of pathogenic microorganisms achieved by chemical, physical, or biological means. Due to its low cost, availability and easy operation, chlorine has historically been the disinfectant of choice for treating wastewater. Chlorine oxidises organic matter, including microorganisms and pathogens. Alternative disinfection systems include ultraviolet (UV) light and ozonation. UV light found in sunlight kills viruses and bacteria. Disinfection can thus take place in shallow ponds. UV radiation can also be generated through special lamps, which can be installed in a channel or pipe. Ozone is a powerful oxidant and is generated from oxygen in an energy-intensive process. It degrades both organic and inorganic pollutants, including odour-producing agents.

Simple, single cell organisms that are found everywhere on earth. They are essential for maintaining life and performing essential “services”, such as composting, aerobic degradation
of waste, and digesting food in our intestines. Some types, however, can be pathogenic and cause mild to severe illnesses. Bacteria obtain nutrients from their environment by excreting enzymes that dissolve complex molecules into more simple ones which can then pass through the cell membrane.

The process by which biodegradable components are biologically decomposed by microorganisms (mainly bacteria and fungi) under controlled aerobic conditions.
The elimination of (pathogenic) microorganisms by inactivation (using chemical agents, radiation or heat) or by physical separation processes (e.g., membranes). See POST
A mechanical separation process using a porous medium (e.g., cloth, paper, sand bed, or mixed media bed) that captures particulate material and permits the liquid or gaseous fraction to pass through. The size of the pores of the medium determines what is captured and what passes through.Any cellular or non-cellular microbiological entity capable of replication or of transferring genetic material (e.g. bacteria, viruses, protozoa, algae or fungi).
Any substance that is used for growth. Nitrogen (N), phosphorus (P) and potassium (K) are the main nutrients contained in agricultural fertilisers. N and P are also primarily responsible for the eutrophication of water bodies.
An organism or other agent that causes disease.A diverse group of unicellular eukaryotic organisms, including amoeba, ciliates, and flagellates. Some can be pathogenic and cause mild to severe illnesses.
An infectious agent consisting of a nucleic acid (DNA or RNA) and a protein coat. Viruses can only replicate in the cells of a living host. Some pathogenic viruses are known to be waterborne (e.g., the rotavirus that can cause diarrheal disease).
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Materials

Post-Treatment technologies require special materials. Accessing chlorine, UV lamps, filter materials such as activated carbon or membranes may be a challenge, especially during an acute response phase. Accessing chlorine may be sensitive as it can be used for the construction of chemical weapons.

Applicability

The decision to install a Post-Treatment technology depends mainly on quality requirements for desired end-use and/or national standards. Other factors to consider are effluent characteristics, budget, availability of materials, and operation and maintenance capacity. Post-Treatment can only be applied effectively after a functioning secondary treatment. Pathogens tend to be masked by suspended solids in unfiltered secondary effluent. Chlorine should not be used if water contains significant amounts of organic matter, as disinfection byproducts can form. Post-Treatment is not a high priority during the acute response. However, as it is very effective in removing pathogens, it can be considered for implementation during recovery to minimise public health risks.

General term for a liquid that leaves a technology, typically after blackwater or sludge has undergone solids separation or some other type of treatment. Effluent originates at either a collection and storage or a (semi-) centralised treatment technology. Depending on the type of treatment, the effluent may be completely sanitised or may require further treatment before it can be used or disposed of.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The elimination of (pathogenic) microorganisms by inactivation (using chemical agents, radiation or heat) or by physical separation processes (e.g., membranes). See POST
The utilisation of products derived from a sanitation system.
Any cellular or non-cellular microbiological entity capable of replication or of transferring genetic material (e.g. bacteria, viruses, protozoa, algae or fungi).
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
An organism or other agent that causes disease.A diverse group of unicellular eukaryotic organisms, including amoeba, ciliates, and flagellates. Some can be pathogenic and cause mild to severe illnesses.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Follows primary treatment to achieve the removal of biodegradable organic matter and suspended solids from effluent. Nutrient removal (e.g., phosphorus) and disinfection can be included in the definition of secondary treatment or tertiary treatment, depending on the configuration.
Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
Follows secondary treatment to achieve enhanced removal of pollutants from effluent. Nutrient removal (e.g., phosphorus) and disinfection can be included in the definition of secondary treatment or tertiary treatment, depending on the configuration. See POST
An infectious agent consisting of a nucleic acid (DNA or RNA) and a protein coat. Viruses can only replicate in the cells of a living host. Some pathogenic viruses are known to be waterborne (e.g., the rotavirus that can cause diarrheal disease).
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Operation and Maintenance

Post-Treatment methods require continuous monitoring (influent and effluent quality, head loss of filters, dosage of disinfectants, etc.) to ensure high performance. Due to the accumulation of solids and microbial growth, the effectiveness of sand, membrane and activated carbon filters decreases over time. Frequent cleaning (backwashing) or replacement of filter material is required. Expert know-how is required, especially to avoid damaging membranes or to determine the right dosage of chlorine and ensure proper mixing. Ozone must be generated on-site because it is chemically unstable and rapidly decomposes to oxygen. In UV disinfection, the UV lamp needs regular cleaning and annual replacement.

General term for a liquid that leaves a technology, typically after blackwater or sludge has undergone solids separation or some other type of treatment. Effluent originates at either a collection and storage or a (semi-) centralised treatment technology. Depending on the type of treatment, the effluent may be completely sanitised or may require further treatment before it can be used or disposed of.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The elimination of (pathogenic) microorganisms by inactivation (using chemical agents, radiation or heat) or by physical separation processes (e.g., membranes). See POST
The utilisation of products derived from a sanitation system.
The general name for the liquid that enters into a sanitation system or process (e.g., wastewater).
Any cellular or non-cellular microbiological entity capable of replication or of transferring genetic material (e.g. bacteria, viruses, protozoa, algae or fungi).
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
An organism or other agent that causes disease.A diverse group of unicellular eukaryotic organisms, including amoeba, ciliates, and flagellates. Some can be pathogenic and cause mild to severe illnesses.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
An infectious agent consisting of a nucleic acid (DNA or RNA) and a protein coat. Viruses can only replicate in the cells of a living host. Some pathogenic viruses are known to be waterborne (e.g., the rotavirus that can cause diarrheal disease).
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Health and Safety

Personal protective equipment should be used at all times. If chlorine (or ozone) is applied to an effluent that is not well treated, disinfection by-products such as trihalomethanes may form and threaten environmental and human health. There are also safety concerns related to handling and storage of liquid chlorine. Activated carbon adsorption and ozonation can remove unpleasant colours and odours, increasing the acceptance of reusing reclaimed water. Filter media are contaminated after use and need proper treatment/disposal when replaced.

General term for a liquid that leaves a technology, typically after blackwater or sludge has undergone solids separation or some other type of treatment. Effluent originates at either a collection and storage or a (semi-) centralised treatment technology. Depending on the type of treatment, the effluent may be completely sanitised or may require further treatment before it can be used or disposed of.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:
User interface (U), Collection and Storage/Treatment (S), Conveyance (C), (Semi-) Centralised Treatment (T), Use and/or Disposal (U).
A sanitation system is a multi-step process in which sanitation products such as human excreta and wastewater are managed from the point of generation to the point of use or ultimate disposal. It is a context-specific series of technologies and services for the management of these sanitation products, i.e. for their collection, containment, transport, treatment, transformation, use or disposal. A sanitation system comprises functional groups of technologies that can be selected according to context. By selecting technologies from each applicable functional group, considering the incoming and outgoing products, and the suitability of the technologies in a particular context, a logical, modular sanitation system can be designed. A sanitation system also includes the management and operation and maintenance (O & M) required to ensure that the system functions safely and sustainably. The elimination of (pathogenic) microorganisms by inactivation (using chemical agents, radiation or heat) or by physical separation processes (e.g., membranes). See POST
The utilisation of products derived from a sanitation system.
A colourless, odourless, flammable, gaseous hydrocarbon with the chemical formula CH4. Methane is present in natural gas and is the main component (50–75%) of biogas that is formed by the anaerobic decomposition of organic matter.
Any cellular or non-cellular microbiological entity capable of replication or of transferring genetic material (e.g. bacteria, viruses, protozoa, algae or fungi).
A sanitation system in which excreta and wastewater are collected and stored or treated on the plot where they are generated.
An organism or other agent that causes disease.A diverse group of unicellular eukaryotic organisms, including amoeba, ciliates, and flagellates. Some can be pathogenic and cause mild to severe illnesses.
The means of safely collecting and hygienically disposing of excreta and liquid
wastes for the protection of public health and the preservation of the quality of public water bodies and, more generally, of the environment.

Waste matter that is transported through the sewer.
An open channel or closed pipe used to convey sewage. See C.3 and C.4
An infectious agent consisting of a nucleic acid (DNA or RNA) and a protein coat. Viruses can only replicate in the cells of a living host. Some pathogenic viruses are known to be waterborne (e.g., the rotavirus that can cause diarrheal disease).
Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.

Costs

Sand filtration and ponds are relatively cheap (but the latter needs a lot of space), while activated carbon and membrane filters are costlier. In activated carbon adsorption, the filter material needs to be regularly replaced. Ozonation costs are generally higher compared to other disinfection methods. Chlorine is often widely available and not expensive.

The elimination of (pathogenic) microorganisms by inactivation (using chemical agents, radiation or heat) or by physical separation processes (e.g., membranes). See POST
A mechanical separation process using a porous medium (e.g., cloth, paper, sand bed, or mixed media bed) that captures particulate material and permits the liquid or gaseous fraction to pass through. The size of the pores of the medium determines what is captured and what passes through.Any cellular or non-cellular microbiological entity capable of replication or of transferring genetic material (e.g. bacteria, viruses, protozoa, algae or fungi).
An organism or other agent that causes disease.A diverse group of unicellular eukaryotic organisms, including amoeba, ciliates, and flagellates. Some can be pathogenic and cause mild to severe illnesses.
An infectious agent consisting of a nucleic acid (DNA or RNA) and a protein coat. Viruses can only replicate in the cells of a living host. Some pathogenic viruses are known to be waterborne (e.g., the rotavirus that can cause diarrheal disease).

Social Considerations

Professionals are needed to operate and manage Post-Treatment technologies.

Key decision criteria

Input Products

Effluent

Output Products


Emergency Phase

Acute Response +
Stabilisation +
Recovery + +

Challenging Ground Conditions

Suitable

Application Level / Scale

Neighbourhood +
City + +

Water-based and Dry Technologies

Water-Based

Management Level

Shared +
Public + +

Technical Complexity

Medium

Space Required

Little

Objectives & Key Features

• Removal of residual suspended solids and pathogens

Strength & Weakness

  • Additional removal of pathogens and/or chemical contaminants
  • May allow for direct reuse of the treated wastewater
  • Skills, technology, spare parts and materials may not be locally available
  • Constant source of electricity and/or chemicals needed
  • Filter materials need regular backwashing or replacement
  • Chlorination and ozonation can form toxic disinfection by-products

Selected References

Design considerations in different contexts

Robbins, D. M., Ligon, G. C. (2014): How to Design Wastewater Systems for Local Conditions in Developing Countries. IWA Publishing, London, UK

Tchobanoglous, G., Burton, F. L., Stensel, H.D. (2004): Wastewater Engineering: Treatment and Reuse. Metcalf & Eddy, New York, US

NWRI (2012): Ultraviolet Disinfection. Guidelines for Drinking Water and Water Reuse., California, US

Guidelines for the safe use of sanitation products

WHO (2006): WHO Guidelines for the safe use of wastewater, excreta and greywater, Geneva, Switzerland

arrow_upward